• Skip to primary navigation
  • Skip to main content

Southwest Transportation Workforce Center

Connecting and empowering
the transportation workforce

  • Facebook
  • LinkedIn
  • RSS
  • Twitter
  • Who We Are
    • The SWTWC Vision
    • The SWTWC Team
    • Steering Committee
    • Featured Partnerships
    • Get Involved—Become an SWTWC Member
  • Workforce Initiatives
    • 21st Century Apprenticeships
    • GIS Training
    • Supply Chain Diversity
    • Trucking
    • Career Pathways Initiative
  • Labor Market Analysis
    • FHWA Job Needs and Priorities Report (Phase 1)
    • FHWA Job Needs and Priorities Report (Phase 2)
    • State of the Transportation and Mobility Workforce
  • Resource Center
    • Ask the Experts
    • Education and Training Programs
      • Workforce Education and Training Center Map
    • Workforce Development Resources
    • Mapping technologies to examine transportation opportunities
    • Visualizing the Transportation Workforce
You are here: Home / Resources / A model for the fleet sizing of demand responsive transportation services with time windows

A model for the fleet sizing of demand responsive transportation services with time windows

October 13, 2015

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
Author: Marco Diana
Abstract:

We study the problem of determining the number of vehicles needed to provide a demand responsive transit service with a predetermined quality for the user in terms of waiting time at the stops and maximum allowed detour. We propose a probabilistic model that requires only the knowledge of the distribution of the demand over the service area and the quality of the service in terms of time windows associated of pickup and delivery nodes. This methodology can be much more effective and straightforward compared to a simulation approach whenever detailed data on demand patterns are not available. Computational results under a fairly broad range of test problems show that our model can provide an estimation of the required size of the fleet in several different scenarios.

Website: http://www-bcf.usc.edu/~maged/…
Source: Maged Dessouky home page
Focus Areas: continuous approximation models, demand responsive transit systems, paratransit services, probabilistic models, Public transportation
Resource Types: Journal Paper
Target Education Levels: Bachelors Degree, Graduates, practitioners, private sector, public sector, researchers
Southwest Transportation Workforce Center

Copyright © 2025 California State University, Long Beach
The Center for International Trade and Transportation
6300 E. State University Drive, Ste. 255
Long Beach, CA 90815
(562) 985-2872
Contact Us